ফাংশন ও ফাংশনের লেখচিত্র (অধ্যায় ৯)

একাদশ- দ্বাদশ শ্রেণি - উচ্চতর গণিত উচ্চতর গণিত – ১ম পত্র | - | NCTB BOOK
1.8k
1.8k

অন্বয় ও ফাংশন

347
347
common.please_contribute_to_add_content_into অন্বয় ও ফাংশন.
common.content

ফাংশনের ডোমেন ও রেঞ্জ

4.1k
4.1k

ফাংশনের ডোমেন (Domain) এবং রেঞ্জ (Range) হলো ফাংশনের দুটি প্রধান বৈশিষ্ট্য।


ডোমেন (Domain)

ডোমেন হলো ফাংশনের সমস্ত সম্ভাব্য ইনপুট মানগুলোর সেট। অর্থাৎ, ফাংশনের যে মানগুলো ইনপুট হিসেবে নেওয়া যাবে, তাদের সমষ্টিকেই ফাংশনের ডোমেন বলা হয়। সাধারণত ডোমেন নির্ধারণ করতে হলে দেখতে হয় যে ফাংশনটির জন্য কোন ইনপুটগুলো গ্রহণযোগ্য।

উদাহরণ:
ধরা যাক, একটি ফাংশন \(f(x) = \frac{1}{x - 1}\)। এই ফাংশনের ডোমেন হবে সব রিয়াল সংখ্যা, তবে \(x = 1\) বাদে, কারণ \(x = 1\) হলে \(f(x)\) অসীম হয়ে যায়। তাই, ডোমেন হবে \(x \neq 1\)।


রেঞ্জ (Range)

রেঞ্জ হলো ফাংশনের আউটপুটের সমস্ত সম্ভাব্য মানের সেট। অর্থাৎ, ডোমেন থেকে ইনপুট নেওয়ার পর যে মানগুলো ফাংশন থেকে আউটপুট হিসেবে পাওয়া যায়, তাদের সমষ্টিকে রেঞ্জ বলা হয়।

উদাহরণ:
ধরা যাক, \(g(x) = x^2\) একটি ফাংশন যেখানে \(x\) এর মান সব রিয়াল সংখ্যা হতে পারে। এই ক্ষেত্রে, \(g(x)\) এর আউটপুট সর্বদা ধনাত্মক বা শূন্য হবে, কারণ কোনো সংখ্যার বর্গ কখনো ঋণাত্মক হয় না। সুতরাং, এই ফাংশনের রেঞ্জ হবে শূন্য বা ধনাত্মক সব সংখ্যা, অর্থাৎ, \(y \geq 0\)।


এইভাবে, ফাংশনের ডোমেন ও রেঞ্জ ফাংশনের ইনপুট এবং আউটপুটের সীমাবদ্ধতা এবং সুযোগ নির্ধারণ করে।

common.content_added_by

# বহুনির্বাচনী প্রশ্ন

বিভিন্ন ধরণের ফাংশন

1.2k
1.2k

ফাংশনের বিভিন্ন প্রকার রয়েছে, যা তাদের গঠন, প্রকৃতি এবং বৈশিষ্ট্যের উপর ভিত্তি করে শ্রেণিবদ্ধ করা হয়। নিচে কিছু সাধারণ ধরণের ফাংশনের তালিকা এবং তাদের সংক্ষিপ্ত ব্যাখ্যা দেওয়া হলো:


১. রৈখিক ফাংশন (Linear Function)

রৈখিক ফাংশনগুলোতে একটি সরলরেখা বা সোজাসুজি সম্পর্ক থাকে। সাধারণত এই ধরনের ফাংশনের ফর্ম হয় \( f(x) = mx + b \), যেখানে \( m \) হল ঢাল এবং \( b \) হল y-অক্ষের ছেদ বিন্দু।

উদাহরণ: \( f(x) = 2x + 3 \)


২. গৌণ ফাংশন (Quadratic Function)

গৌণ ফাংশনের ডিগ্রি ২ হয় এবং এদের আকার হয় \( f(x) = ax^2 + bx + c \)। এটি একটি প্যারাবোলা আকারের গ্রাফ তৈরি করে।

উদাহরণ: \( f(x) = x^2 - 4x + 4 \)


৩. সূচকীয় ফাংশন (Exponential Function)

সূচকীয় ফাংশনগুলোতে \( x \) এক্সপোনেন্ট হিসেবে থাকে এবং এর সাধারণ ফর্ম হলো \( f(x) = a \cdot b^x \), যেখানে \( b \) হলো বেস এবং \( a \) হলো একটি ধ্রুবক।

উদাহরণ: \( f(x) = 2^x \)


৪. লগারিদমিক ফাংশন (Logarithmic Function)

লগারিদমিক ফাংশনগুলো হলো সূচকীয় ফাংশনের বিপরীতধর্মী ফাংশন। এদের সাধারণ ফর্ম হলো \( f(x) = \log_b(x) \), যেখানে \( b \) বেস বা ভিত্তি।

উদাহরণ: \( f(x) = \log_2(x) \)


৫. ত্রিকোণমিতিক ফাংশন (Trigonometric Function)

ত্রিকোণমিতিক ফাংশনগুলো কোণ এবং তাদের সম্পর্কিত অনুপাতের উপর ভিত্তি করে তৈরি হয়। সাধারণ ত্রিকোণমিতিক ফাংশন হলো sine (\( \sin \)), cosine (\( \cos \)), tangent (\( \tan \)) ইত্যাদি।

উদাহরণ: \( f(x) = \sin(x) \), \( f(x) = \cos(x) \)


৬. পরম ফাংশন (Absolute Function)

পরম ফাংশনগুলোর আউটপুট সর্বদা ধনাত্মক হয়। সাধারণত এদের ফর্ম হলো \( f(x) = |x| \), যেখানে \( |x| \) x-এর পরম মান বোঝায়।

উদাহরণ: \( f(x) = |x - 3| \)


৭. ধাপে ফাংশন (Step Function)

ধাপে ফাংশন এমন ফাংশন যা এক ধাপ থেকে আরেক ধাপে চলে যায় এবং নির্দিষ্ট মানে রূপান্তরিত হয়। এদের সাধারণ উদাহরণ হলো Heaviside Function এবং **Greatest Integer Function (Floor Function)**।

উদাহরণ: \( f(x) = \lfloor x \rfloor \)


৮. যৌগিক ফাংশন (Composite Function)

যৌগিক ফাংশন হলো দুটি বা ততোধিক ফাংশনের সমন্বয়, যেখানে একটি ফাংশনের আউটপুট অন্য ফাংশনের ইনপুট হিসেবে ব্যবহার করা হয়। এটি সাধারণত \( f(g(x)) \) আকারে প্রকাশ করা হয়।

উদাহরণ: \( f(g(x)) \) যেখানে \( f(x) = x + 2 \) এবং \( g(x) = x^2 \), তাহলে \( f(g(x)) = x^2 + 2 \)


৯. পূর্ণাংক ফাংশন (Polynomial Function)

পূর্ণাংক ফাংশন হলো এমন ফাংশন যেখানে একটি পূর্ণ সংখ্যার ঘাত থাকে। এদের সাধারণ ফর্ম হলো \( f(x) = a_nx^n + a_{n-1}x^{n-1} + \ldots + a_0 \)।

উদাহরণ: \( f(x) = x^3 + 2x^2 + 5x + 7 \)


১০. যুক্তিসংগত ফাংশন (Rational Function)

যুক্তিসংগত ফাংশন হলো দুটি পূর্ণাংক ফাংশনের অনুপাত। এর সাধারণ ফর্ম হলো \( f(x) = \frac{p(x)}{q(x)} \), যেখানে \( p(x) \) এবং \( q(x) \) উভয়ই পূর্ণাংক ফাংশন।

উদাহরণ: \( f(x) = \frac{2x + 3}{x - 1} \)


এই ফাংশনগুলোর বিভিন্ন প্রকারভেদ তাদের গাণিতিক বৈশিষ্ট্য এবং আচরণের কারণে বিভিন্ন গাণিতিক সমস্যার সমাধানে ব্যবহৃত হয়।

common.content_added_by

এক-এক ফাংশন

1.6k
1.6k

এক-এক ফাংশন (One-to-One Function) বা ইনজেক্টিভ ফাংশন হলো এমন একটি ফাংশন, যেখানে প্রতিটি ভিন্ন ইনপুটের জন্য একটি ভিন্ন আউটপুট থাকে। অর্থাৎ, যদি \( f(x_1) = f(x_2) \) হয়, তবে \( x_1 = x_2 \) হতে হবে। একে সাধারণত ইনজেক্টিভ ফাংশনও বলা হয়।


এক-এক ফাংশনের বৈশিষ্ট্য

১. প্রতিটি ইনপুটের জন্য আলাদা আউটপুট: এক-এক ফাংশনে, ডোমেনের প্রতিটি ভিন্ন ইনপুট মানের জন্য একটি ভিন্ন আউটপুট মান থাকে। অর্থাৎ, \( x_1 \neq x_2 \) হলে \( f(x_1) \neq f(x_2) \) হবে।

২. হরাইজন্টাল লাইন টেস্ট: ফাংশনটির গ্রাফে কোনো হরাইজন্টাল লাইন একবারের বেশি ছেদ না করলে সেটি এক-এক ফাংশন হিসেবে বিবেচিত হবে। এই পরীক্ষাকে Horizontal Line Test বলা হয়।


উদাহরণ

ধরা যাক \( f(x) = 2x + 3 \) একটি ফাংশন। এখানে:

  • \( f(1) = 2 \times 1 + 3 = 5 \)
  • \( f(2) = 2 \times 2 + 3 = 7 \)

যেহেতু \( f(1) \neq f(2) \), এবং ডোমেনের প্রতিটি ভিন্ন মানের জন্য আলাদা আউটপুট পাওয়া যাচ্ছে, তাই এটি একটি এক-এক ফাংশন।


এক-এক ফাংশনের ব্যবহার

এক-এক ফাংশন বিভিন্ন গাণিতিক এবং প্রোগ্রামিং সমস্যায় ব্যবহৃত হয়, বিশেষ করে ইনভার্স ফাংশনের জন্য, কারণ এক-এক ফাংশনের ক্ষেত্রে প্রতিটি আউটপুটের জন্য একটি নির্দিষ্ট ইনপুট থাকে, যা ইনভার্স ফাংশন নির্ধারণে সহায়ক।

common.content_added_by

সার্বিক ফাংশন

2k
2k

সার্বিক ফাংশন (Onto Function) বা সার্জেক্টিভ ফাংশন হলো এমন একটি ফাংশন, যেখানে রেঞ্জের প্রতিটি মানের জন্য ডোমেনের অন্তত একটি মান থাকে। অর্থাৎ, ফাংশনটির আউটপুট সেট (রেঞ্জ) পুরো কোডোমেন বা লক্ষ সেটটি পূর্ণ করে।


সার্বিক ফাংশনের বৈশিষ্ট্য

১. রেঞ্জ এবং কোডোমেন সমান: সার্বিক ফাংশনের রেঞ্জ এবং কোডোমেন এক এবং অভিন্ন। অর্থাৎ, ফাংশনের প্রতিটি আউটপুট মান কোডোমেনে অন্তর্ভুক্ত থাকবে এবং কোডোমেনের কোনো মান বাদ পড়বে না।

২. ইনভার্স নির্ধারণ: একটি ফাংশন যদি একসঙ্গে এক-এক এবং সার্বিক হয়, তবে তা ইনভার্টেবল হয় এবং এর ইনভার্স ফাংশনও সার্বিক হবে।


উদাহরণ

ধরা যাক, \( f: \mathbb{R} \rightarrow \mathbb{R} \) একটি ফাংশন, যেখানে \( f(x) = x^3 \)। এখানে,

  • যেকোনো \( y \in \mathbb{R} \)-এর জন্য \( f(x) = y \) সমাধান আছে, যেমন \( x = \sqrt[3]{y} \)।
  • অর্থাৎ, প্রতিটি রিয়াল আউটপুট \( y \)-এর জন্য এমন একটি ইনপুট \( x \) আছে, যা \( f(x) = y \) কে সন্তুষ্ট করে।

সুতরাং, এই ফাংশনটি সার্বিক।


সার্বিক ফাংশনের ব্যবহার

সার্বিক ফাংশন গণিত, গাণিতিক বিশ্লেষণ, এবং গাণিতিক মডেলিংয়ে গুরুত্বপূর্ণ, কারণ এটি নিশ্চিত করে যে প্রতিটি আউটপুট বা লক্ষ মানকে ইনপুট মানের মাধ্যমে অর্জন করা সম্ভব।

common.content_added_by

সংযোজিত ফাংশন

509
509

সংযোজিত ফাংশন (Bijective Function) হলো এমন একটি ফাংশন, যা একসঙ্গে এক-এক ফাংশন (Injective) এবং সার্বিক ফাংশন (Onto) উভয়ই। অর্থাৎ, সংযোজিত ফাংশনের প্রতিটি ইনপুট মানের জন্য একটি স্বতন্ত্র আউটপুট থাকে এবং সেই আউটপুট কোডোমেনের প্রতিটি উপাদানকে অন্তর্ভুক্ত করে। এই ধরনের ফাংশনকে বাইজেক্টিভ ফাংশনও বলা হয়।


সংযোজিত ফাংশনের বৈশিষ্ট্য

১. এক-এক এবং সার্বিক উভয়ই: সংযোজিত ফাংশন এমন একটি ফাংশন, যা একদিকে যেমন এক-এক ফাংশনের শর্ত পূরণ করে, অর্থাৎ প্রতিটি ইনপুট মানের জন্য একটি স্বতন্ত্র আউটপুট থাকে, অন্যদিকে এটি সার্বিকও, অর্থাৎ কোডোমেনের প্রতিটি উপাদান একটি ইনপুটের মাধ্যমে অর্জন করা যায়।

২. ইনভার্স ফাংশনের অস্তিত্ব: যেহেতু সংযোজিত ফাংশনে প্রতিটি আউটপুটের জন্য একটি নির্দিষ্ট ইনপুট থাকে এবং ফাংশনটি কোডোমেনের সমস্ত মানকে অন্তর্ভুক্ত করে, তাই এই ধরনের ফাংশনের ইনভার্স ফাংশন থাকা সম্ভব। অর্থাৎ, সংযোজিত ফাংশন ইনভার্টেবল।


উদাহরণ

ধরা যাক, \( f: \mathbb{R} \rightarrow \mathbb{R} \) একটি ফাংশন, যেখানে \( f(x) = 2x + 3 \)।

  • এটি এক-এক, কারণ \( f(x_1) = f(x_2) \Rightarrow x_1 = x_2 \)।
  • এটি সার্বিকও, কারণ যেকোনো \( y \in \mathbb{R} \)-এর জন্য \( f(x) = y \) হলে \( x = \frac{y - 3}{2} \) পাওয়া যায়, অর্থাৎ প্রতিটি \( y \)-এর জন্য একটি \( x \) আছে।

এখন, যেহেতু এই ফাংশনটি একসঙ্গে এক-এক এবং সার্বিক, তাই এটি একটি সংযোজিত ফাংশন।


সংযোজিত ফাংশনের ব্যবহার

সংযোজিত ফাংশন গণিতে অত্যন্ত গুরুত্বপূর্ণ, বিশেষ করে ফাংশনের ইনভার্স খুঁজে বের করতে এবং সমীকরণের সমাধানে। সংযোজিত ফাংশন ব্যবহার করে ডেটাবেস মডেলিং, এনক্রিপশন এবং ডিকোডিং প্রক্রিয়ায় কার্যকর উপায়ে কাজ করা যায়।

common.content_added_by

অভেদ ফাংশন

780
780

অভেদ ফাংশন (Identity Function) হলো এমন একটি ফাংশন, যেখানে প্রতিটি ইনপুটের আউটপুট তার সমান থাকে। অর্থাৎ, অভেদ ফাংশন প্রতিটি মানকে অপরিবর্তিত রেখে তা ফেরত দেয়। এটি সাধারণত \( I(x) = x \) আকারে প্রকাশ করা হয়, যেখানে \( x \) ইনপুট এবং \( I(x) \) তার আউটপুট।


অভেদ ফাংশনের বৈশিষ্ট্য

১. অপরিবর্তিত আউটপুট: অভেদ ফাংশনে প্রতিটি ইনপুট \( x \)-এর জন্য আউটপুটও \( x \) হয়। অর্থাৎ, \( I(x) = x \)।

২. গ্রাফ: অভেদ ফাংশনের গ্রাফ \( y = x \) রেখা বরাবর একটি সোজাসুজি রেখা হয়, যা মূলবিন্দুর (origin) উপর দিয়ে চলে।

৩. ফাংশনের কম্পোজিশনে ভূমিকা: অভেদ ফাংশন ফাংশন কম্পোজিশনে গুরুত্বপূর্ণ ভূমিকা পালন করে, কারণ যে কোনো ফাংশন \( f \)-এর জন্য, \( f \circ I = f \) এবং \( I \circ f = f \)। অর্থাৎ, অভেদ ফাংশন একটি ফাংশনের মান পরিবর্তন না করে সেটিকে অপরিবর্তিত রাখে।


উদাহরণ

ধরা যাক \( I: \mathbb{R} \rightarrow \mathbb{R} \) একটি অভেদ ফাংশন, যেখানে \( I(x) = x \)। এখানে:

  • যদি \( x = 5 \) হয়, তবে \( I(5) = 5 \)।
  • যদি \( x = -3 \) হয়, তবে \( I(-3) = -3 \)।

এই ক্ষেত্রে প্রতিটি ইনপুট তার নিজস্ব মানকে আউটপুট হিসেবে ফেরত দেয়, তাই এটি একটি অভেদ ফাংশন।


অভেদ ফাংশনের ব্যবহার

অভেদ ফাংশন গাণিতিক বিশ্লেষণ এবং বিমূর্ত বীজগণিতে গুরুত্বপূর্ণ ভূমিকা পালন করে, বিশেষ করে যখন একটি ফাংশনের প্রকৃতি বা বৈশিষ্ট্য অক্ষুণ্ণ রাখা প্রয়োজন। এটি ফাংশন কম্পোজিশনের ক্ষেত্রে বিশেষভাবে কার্যকর, কারণ অভেদ ফাংশনের সাথে কম্পোজিশনে কোনো ফাংশনের আউটপুট অপরিবর্তিত থাকে।

common.content_added_by

ধ্রুবক ফাংশন

492
492

ধ্রুবক ফাংশন (Constant Function) হলো এমন একটি ফাংশন, যেখানে প্রতিটি ইনপুটের জন্য আউটপুট একটি নির্দিষ্ট ধ্রুবক মান হয়। অর্থাৎ, ডোমেনের যেকোনো মানের জন্য আউটপুট সর্বদা একটি নির্দিষ্ট মানেই থাকে এবং পরিবর্তিত হয় না। ধ্রুবক ফাংশনের সাধারণ রূপ হলো \( f(x) = c \), যেখানে \( c \) একটি ধ্রুবক সংখ্যা।


ধ্রুবক ফাংশনের বৈশিষ্ট্য

১. নির্দিষ্ট আউটপুট: ধ্রুবক ফাংশনে যে মানই ইনপুট হিসেবে দেওয়া হোক না কেন, আউটপুট সবসময় একটি নির্দিষ্ট ধ্রুবক মান \( c \) হয়।

২. গ্রাফ: ধ্রুবক ফাংশনের গ্রাফ \( y = c \) রেখা বরাবর একটি অনুভূমিক (horizontal) রেখা হয়। এই রেখা \( y \)-অক্ষের উপর \( c \) পয়েন্ট দিয়ে অতিক্রম করে এবং এই রেখা কোনো ঢাল (slope) ধারণ করে না, অর্থাৎ ঢাল শূন্য।

৩. এক-এক বা সার্বিক নয়: ধ্রুবক ফাংশন এক-এক (one-to-one) বা সার্বিক (onto) নয়, কারণ এটি প্রতিটি ইনপুট মানের জন্য একই আউটপুট প্রদান করে এবং পুরো কোডোমেন কভার করে না।


উদাহরণ

ধরা যাক একটি ধ্রুবক ফাংশন \( f(x) = 7 \)।

  • যদি \( x = 1 \) হয়, তবে \( f(x) = 7 \)।
  • যদি \( x = -3 \) হয়, তবুও \( f(x) = 7 \)।
  • যদি \( x = 10 \) হয়, তখনও \( f(x) = 7 \)।

এখানে যেকোনো ইনপুটের জন্য আউটপুট সর্বদা ৭, যা এই ফাংশনকে একটি ধ্রুবক ফাংশন হিসেবে সংজ্ঞায়িত করে।


ধ্রুবক ফাংশনের ব্যবহার

ধ্রুবক ফাংশন বিভিন্ন গাণিতিক ও বাস্তব জীবনের পরিস্থিতিতে ব্যবহার করা হয়, যেখানে একটি নির্দিষ্ট মান অপরিবর্তিত থাকে। উদাহরণস্বরূপ, একটি বস্তুর তাপমাত্রা যদি একটি নির্দিষ্ট সময়ের জন্য অপরিবর্তিত থাকে, তবে সেই তাপমাত্রাকে ধ্রুবক ফাংশন দিয়ে প্রকাশ করা যায়।

common.content_added_by

বিপরীত ফাংশন

1.4k
1.4k

বিপরীত ফাংশন (Inverse Function) হলো এমন একটি ফাংশন, যা একটি মূল ফাংশনের আউটপুটকে তার ইনপুটে পরিণত করে। অর্থাৎ, যদি \( f(x) \) একটি ফাংশন হয়, তবে এর বিপরীত ফাংশন \( f^{-1}(x) \) হবে, যা \( f(x) \) এর আউটপুট থেকে ইনপুটে ফিরে আসতে সাহায্য করে। বিপরীত ফাংশন শুধুমাত্র তখনই অস্তিত্ব রাখে যখন ফাংশনটি এক-এক এবং সার্বিক হয়।


বিপরীত ফাংশনের বৈশিষ্ট্য

১. আবর্তন: যদি \( f(x) \) এবং \( f^{-1}(x) \) বিপরীত ফাংশন হয়, তবে \( f(f^{-1}(x)) = x \) এবং \( f^{-1}(f(x)) = x \) হবে। অর্থাৎ, \( f \) এবং \( f^{-1} \) পরস্পরের বিপরীত এবং একে অপরকে আবর্তন করে।

২. ডোমেন এবং রেঞ্জের বিনিময়: মূল ফাংশনের ডোমেন বিপরীত ফাংশনের রেঞ্জ হয়ে যায় এবং মূল ফাংশনের রেঞ্জ বিপরীত ফাংশনের ডোমেন হয়ে যায়।

৩. গ্রাফে প্রতিফলন: বিপরীত ফাংশনের গ্রাফ মূল ফাংশনের গ্রাফের উপর \( y = x \) রেখার সাপেক্ষে প্রতিফলিত হয়।


উদাহরণ

ধরা যাক \( f(x) = 2x + 3 \) একটি ফাংশন।

এই ফাংশনের বিপরীত ফাংশন বের করতে:
১. \( y = 2x + 3 \) লিখুন।
২. \( x \)-এর মান বের করার জন্য \( y \) এবং \( x \) এর স্থান পরিবর্তন করুন: \( x = 2y + 3 \)।
৩. এরপর \( y \) বের করুন: \( y = \frac{x - 3}{2} \)।

তাহলে, \( f^{-1}(x) = \frac{x - 3}{2} \) হবে।

এখন, যদি \( f(x) = 2x + 3 \) এবং \( f^{-1}(x) = \frac{x - 3}{2} \), তবে \( f(f^{-1}(x)) = x \) এবং \( f^{-1}(f(x)) = x \) হবে, যা বিপরীত ফাংশনের শর্ত পূরণ করে।


বিপরীত ফাংশনের ব্যবহার

বিপরীত ফাংশন বিভিন্ন গাণিতিক সমস্যার সমাধানে ব্যবহৃত হয়, যেমন ইনপুট থেকে আউটপুট এবং আউটপুট থেকে ইনপুট খুঁজে বের করা। বাস্তব জীবনের উদাহরণ হতে পারে কিলোমিটার থেকে মাইল রূপান্তর বা তাপমাত্রার ফারেনহাইট থেকে সেলসিয়াস রূপান্তর, যেখানে মূল রূপান্তর ফাংশনের বিপরীত ব্যবহার করে উল্টো দিকে মান নির্ধারণ করা হয়।

common.content_added_by

বিপরীত ফাংশনের ডোমেইম এবং রেঞ্জ

439
439

বিপরীত ফাংশনের ডোমেন এবং রেঞ্জ মূল ফাংশনের ডোমেন ও রেঞ্জের বিপরীত হয়। অর্থাৎ, মূল ফাংশনের রেঞ্জ বিপরীত ফাংশনের ডোমেন এবং মূল ফাংশনের ডোমেন বিপরীত ফাংশনের রেঞ্জ হয়ে যায়।


ডোমেন এবং রেঞ্জের সম্পর্ক

১. বিপরীত ফাংশনের ডোমেন: মূল ফাংশনের রেঞ্জ যা আউটপুট হিসেবে পাওয়া যায়, সেটিই বিপরীত ফাংশনের ডোমেন হবে।

২. বিপরীত ফাংশনের রেঞ্জ: মূল ফাংশনের ডোমেন যা ইনপুট হিসেবে ব্যবহৃত হয়, সেটিই বিপরীত ফাংশনের রেঞ্জ হবে।


উদাহরণ

ধরা যাক, \( f(x) = 2x + 3 \) একটি ফাংশন, যার ডোমেন এবং রেঞ্জ হলো সব বাস্তব সংখ্যা (Real Numbers)।

এর বিপরীত ফাংশন হলো \( f^{-1}(x) = \frac{x - 3}{2} \)।

এই ক্ষেত্রে:

  • মূল ফাংশন \( f(x) \)-এর ডোমেন সব বাস্তব সংখ্যা \( \mathbb{R} \), যা বিপরীত ফাংশন \( f^{-1}(x) \)-এর রেঞ্জ হবে।
  • মূল ফাংশন \( f(x) \)-এর রেঞ্জ সব বাস্তব সংখ্যা \( \mathbb{R} \), যা বিপরীত ফাংশন \( f^{-1}(x) \)-এর ডোমেন হবে।

সংক্ষেপে:

  • মূল ফাংশনের ডোমেনবিপরীত ফাংশনের রেঞ্জ
  • মূল ফাংশনের রেঞ্জবিপরীত ফাংশনের ডোমেন

এই নিয়মটি মূল ফাংশন ও বিপরীত ফাংশনের মধ্যে একটি গুরুত্বপূর্ণ সম্পর্ক তৈরি করে।

common.content_added_by

ত্রিকোণমিতিক ফাংশনের পর্যায়

937
937

ত্রিকোণমিতিক ফাংশনের পর্যায় (Period of Trigonometric Functions) বলতে এমন একটি ধ্রুবক মানকে বোঝায়, যার জন্য ফাংশনের মান পুনরাবৃত্ত হয়। অর্থাৎ, ত্রিকোণমিতিক ফাংশনগুলো একটি নির্দিষ্ট সময় পরপর তাদের মান পুনরাবৃত্ত করে।


প্রধান ত্রিকোণমিতিক ফাংশনগুলোর পর্যায়

১. সাইন (sin) এবং কোসাইন (cos) ফাংশনের পর্যায়:

  • \( \sin(x) \) এবং \( \cos(x) \) ফাংশনের পর্যায় হলো \( 2\pi \)।
  • অর্থাৎ, \( \sin(x + 2\pi) = \sin(x) \) এবং \( \cos(x + 2\pi) = \cos(x) \)।
  • এই ফাংশনগুলোর মান প্রতি \( 2\pi \) রেডিয়ানে পুনরাবৃত্ত হয়।

২. ট্যানজেন্ট (tan) এবং কোট্যানজেন্ট (cot) ফাংশনের পর্যায়:

  • \( \tan(x) \) এবং \( \cot(x) \) ফাংশনের পর্যায় হলো \( \pi \)।
  • অর্থাৎ, \( \tan(x + \pi) = \tan(x) \) এবং \( \cot(x + \pi) = \cot(x) \)।
  • এই ফাংশনগুলোর মান প্রতি \( \pi \) রেডিয়ানে পুনরাবৃত্ত হয়।

৩. সেক্যান্ট (sec) এবং কোসেক্যান্ট (csc) ফাংশনের পর্যায়:

  • \( \sec(x) \) এবং \( \csc(x) \) ফাংশনের পর্যায় হলো \( 2\pi \)।
  • অর্থাৎ, \( \sec(x + 2\pi) = \sec(x) \) এবং \( \csc(x + 2\pi) = \csc(x) \)।
  • এই ফাংশনগুলোর মান প্রতি \( 2\pi \) রেডিয়ানে পুনরাবৃত্ত হয়।

সংক্ষেপে:

  • \( \sin(x) \) ও \( \cos(x) \) এর পর্যায়: \( 2\pi \)
  • \( \tan(x) \) ও \( \cot(x) \) এর পর্যায়: \( \pi \)
  • \( \sec(x) \) ও \( \csc(x) \) এর পর্যায়: \( 2\pi \)

এই পর্যায় গুণফলের মাধ্যমে ত্রিকোণমিতিক ফাংশনের গ্রাফ বা মানগুলোকে প্রাকৃতিকভাবে পুনরাবৃত্তি করা যায়, যা গাণিতিক সমস্যার সমাধানে এবং বাস্তব জীবনের চক্রাকার ঘটনাগুলোতে ব্যবহার করা হয়।

common.content_added_by

কিছু গুরুত্বপূর্ণ ফাংশনের লেখচিত্র

503
503
common.please_contribute_to_add_content_into কিছু গুরুত্বপূর্ণ ফাংশনের লেখচিত্র.
common.content

দ্বিঘাত ফাংশন

475
475

দ্বিঘাত ফাংশন (Quadratic Function) হলো এমন একটি ফাংশন, যার ডিগ্রি ২ এবং সাধারণত এটি একটি প্যারাবোলা আকারের গ্রাফ তৈরি করে। দ্বিঘাত ফাংশনের সাধারণ রূপ হলো:

\[
f(x) = ax^2 + bx + c
\]

এখানে \(a\), \(b\), এবং \(c\) হলো ধ্রুবক, যেখানে \(a \neq 0\)।


দ্বিঘাত ফাংশনের বৈশিষ্ট্য

১. ডোমেন: দ্বিঘাত ফাংশনের ডোমেন সব বাস্তব সংখ্যা \( \mathbb{R} \), কারণ এটি যেকোনো রিয়াল ইনপুট গ্রহণ করতে পারে।

২. রেঞ্জ: ফাংশনের গ্রাফ যদি উপরের দিকে খোলা প্যারাবোলা হয় (\( a > 0 \)), তাহলে এর রেঞ্জ হবে \( y \geq k \), যেখানে \( k \) হলো প্যারাবোলার সর্বনিম্ন বিন্দু (vertex)। আবার, যদি প্যারাবোলা নিচের দিকে খোলা হয় (\( a < 0 \)), তাহলে রেঞ্জ হবে \( y \leq k \), যেখানে \( k \) হলো প্যারাবোলার সর্বোচ্চ বিন্দু।

৩. শীর্ষ বিন্দু (Vertex): দ্বিঘাত ফাংশনের শীর্ষ বিন্দু বা ভেরটেক্স হলো প্যারাবোলার সেই বিন্দু, যেখানে এটি সর্বোচ্চ বা সর্বনিম্ন মান ধারণ করে। শীর্ষ বিন্দুটি \( \left( -\frac{b}{2a}, f\left(-\frac{b}{2a}\right) \right) \) দ্বারা নির্ধারিত হয়।

৪. অক্ষীয় প্রতিসাম্য (Axis of Symmetry): দ্বিঘাত ফাংশনের গ্রাফ প্যারাবোলা আকারে থাকে এবং এটি একটি প্রতিসাম্য অক্ষ (axis of symmetry) এর চারপাশে প্রতিসম থাকে। এই অক্ষটি \( x = -\frac{b}{2a} \)।

  1. শূন্যস্থান বা মূল (Roots or Zeros): দ্বিঘাত ফাংশনের মূলগুলো এমন বিন্দু, যেখানে \( f(x) = 0 \)। এদেরকে সমীকরণ \( ax^2 + bx + c = 0 \) সমাধান করে বের করা যায়, যা সাধারণত বর্গমূল সূত্র দ্বারা নির্ধারিত হয়:

\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]


উদাহরণ

ধরা যাক একটি দ্বিঘাত ফাংশন \( f(x) = x^2 - 4x + 3 \)।

  • ডোমেন: সব বাস্তব সংখ্যা, \( x \in \mathbb{R} \)।
  • রেঞ্জ: \( y \geq -1 \) (কারণ \( a = 1 > 0 \), তাই এটি উপরের দিকে খোলা)।
  • শীর্ষ বিন্দু: \( x = \frac{-(-4)}{2 \cdot 1} = 2 \), এবং \( f(2) = 2^2 - 4 \times 2 + 3 = -1 \), তাই শীর্ষ বিন্দু \( (2, -1) \)।
  • অক্ষীয় প্রতিসাম্য: \( x = 2 \)।
  • মূল: \( x^2 - 4x + 3 = 0 \) সমাধান করলে পাই \( x = 1 \) এবং \( x = 3 \)।

গ্রাফিকাল বৈশিষ্ট্য

দ্বিঘাত ফাংশনের গ্রাফ প্যারাবোলা আকারে হয় এবং এটি \( y \)-অক্ষ বরাবর উভয় দিকে প্রতিসম থাকে। প্যারাবোলার শীর্ষ বিন্দুর উপর নির্ভর করে এটি উপরের দিকে খোলা বা নিচের দিকে খোলা থাকতে পারে।

দ্বিঘাত ফাংশন বাস্তব জীবনের বিভিন্ন চক্রাকার এবং সুনির্দিষ্ট পরিমাপের সমস্যায় ব্যবহৃত হয়, যেমন নিক্ষেপণ গতিবিদ্যা (Projectile Motion), অপটিমাইজেশন, এবং বক্রতা বিশ্লেষণে।

common.content_added_by

সূচক ফাংশন

489
489

সূচক ফাংশন (Exponential Function) এমন একটি ফাংশন, যেখানে ভেরিয়েবলটি সূচকে বা ঘাতে থাকে। এটি সাধারণত নিম্নোক্ত আকারে প্রকাশ করা হয়:

\[
f(x) = a \cdot b^x
\]

এখানে:

  • \( a \) হলো ধ্রুবক (যা \( 0 \neq a \)) এবং এটি ফাংশনের প্রাথমিক মান নির্দেশ করে।
  • \( b \) হলো বেস বা ভিত্তি (এবং \( b > 0 \) এবং \( b \neq 1 \)) যা সূচকে ব্যবহৃত হয়।
  • \( x \) হলো ভেরিয়েবল বা সূচক।

সূচক ফাংশনের বৈশিষ্ট্য

১. ডোমেন: সূচক ফাংশনের ডোমেন হলো সব বাস্তব সংখ্যা, অর্থাৎ \( x \in \mathbb{R} \)।

২. রেঞ্জ: সূচক ফাংশনের রেঞ্জ \( y > 0 \), অর্থাৎ সব ধনাত্মক বাস্তব সংখ্যা।

৩. ক্ষয় ও বৃদ্ধির ধরন:

  • যদি \( b > 1 \) হয়, তাহলে ফাংশনটি ধনাত্মক গতিতে বৃদ্ধি পায় (Exponential Growth)।
  • যদি \( 0 < b < 1 \) হয়, তাহলে ফাংশনটি ক্রমাগত ক্ষয় পায় (Exponential Decay)।

৪. অক্ষীয় ছেদ বিন্দু: যখন \( x = 0 \), তখন \( f(x) = a \cdot b^0 = a \cdot 1 = a \)। অর্থাৎ, সূচক ফাংশনের গ্রাফ সবসময় \( y \)-অক্ষকে \( (0, a) \) বিন্দুতে অতিক্রম করে।

৫. আসমানটোট: সূচক ফাংশনের একটি আসমানটোট থাকে, যা \( y = 0 \) রেখার সমান্তরাল এবং এই রেখাকে ফাংশনের মান স্পর্শ করে না।


উদাহরণ

১. যদি \( f(x) = 2^x \) হয়, তবে এটি একটি বৃদ্ধি ফাংশন (Exponential Growth), কারণ \( b = 2 > 1 \)। এখানে:

  • ডোমেন: সব বাস্তব সংখ্যা।
  • রেঞ্জ: \( y > 0 \)।
  • অক্ষীয় ছেদ বিন্দু: \( (0, 1) \)।

২. যদি \( f(x) = 0.5^x \) হয়, তবে এটি একটি ক্ষয় ফাংশন (Exponential Decay), কারণ \( 0 < b = 0.5 < 1 \)। এখানে:

  • ডোমেন: সব বাস্তব সংখ্যা।
  • রেঞ্জ: \( y > 0 \)।
  • অক্ষীয় ছেদ বিন্দু: \( (0, 1) \)।

সূচক ফাংশনের ব্যবহার

সূচক ফাংশন বাস্তব জীবনের বিভিন্ন ক্ষেত্রে গুরুত্বপূর্ণ, যেমন:

  • বৃদ্ধি: জনসংখ্যা বৃদ্ধি, ব্যাঙ্কে সুদের হিসাব, এবং বিনিয়োগের বৃদ্ধি।
  • ক্ষয়: তেজস্ক্রিয় ক্ষয়, ঔষধের ক্ষয়, এবং তাপীয় ক্ষয়।
  • গণনা: কম্পিউটারে লজিক্যাল অপারেশন এবং সংকেত বিশ্লেষণেও সূচক ফাংশন ব্যবহার করা হয়।

সূচক ফাংশনের মাধ্যমে বিভিন্ন পরিবর্তনশীল গাণিতিক সমস্যা এবং চক্রাকার ঘটনাগুলোকে বিশ্লেষণ করা সহজ হয়।

common.content_added_by

লগারিদমিক ফাংশন

630
630

লগারিদমিক ফাংশন (Logarithmic Function) হলো এমন একটি ফাংশন, যা একটি নির্দিষ্ট ভিত্তি (base) নিয়ে একটি সংখ্যার লগারিদম নির্ণয় করে। লগারিদমিক ফাংশন মূলত সূচক ফাংশনের বিপরীত (inverse) ফাংশন হিসেবে কাজ করে। এর সাধারণ রূপ:

\[
f(x) = \log_b(x)
\]

এখানে:

  • \( b \) হলো লগারিদমের ভিত্তি (base) এবং \( b > 0 \) ও \( b \neq 1 \) হতে হবে।
  • \( x \) হলো সেই সংখ্যা, যার লগারিদম নির্ণয় করতে হবে এবং \( x > 0 \) হতে হবে।

লগারিদমিক ফাংশনের বৈশিষ্ট্য

১. ডোমেন: লগারিদমিক ফাংশনের জন্য ডোমেন হলো সব ধনাত্মক বাস্তব সংখ্যা, অর্থাৎ \( x > 0 \)।

২. রেঞ্জ: লগারিদমিক ফাংশনের রেঞ্জ হলো সব বাস্তব সংখ্যা, অর্থাৎ \( y \in \mathbb{R} \)।

৩. বিপরীত ফাংশন: লগারিদমিক ফাংশন হলো সূচক ফাংশনের বিপরীত। অর্থাৎ, যদি \( f(x) = b^x \) হয়, তবে এর বিপরীত ফাংশন \( f^{-1}(x) = \log_b(x) \)।

৪. বেসের প্রভাব:

  • যদি \( b > 1 \) হয়, তাহলে লগারিদমিক ফাংশনের গ্রাফ ধীরে ধীরে বৃদ্ধি পায় (increasing)।
  • যদি \( 0 < b < 1 \) হয়, তাহলে গ্রাফ ধীরে ধীরে হ্রাস পায় (decreasing)।

৫. অক্ষীয় ছেদ বিন্দু: লগারিদমিক ফাংশনের গ্রাফ \( (1, 0) \) বিন্দুতে \( x \)-অক্ষকে অতিক্রম করে, কারণ \( \log_b(1) = 0 \)।

৬. আসমানটোট: লগারিদমিক ফাংশনের একটি আসমানটোট থাকে, যা \( x = 0 \) রেখার সমান্তরাল। গ্রাফ কখনোই \( x = 0 \) রেখাকে স্পর্শ করে না।


উদাহরণ

১. প্রাকৃতিক লগারিদম (Natural Logarithm): যদি ভিত্তি \( e \) হয়, যেখানে \( e \approx 2.718 \), তাহলে লগারিদম ফাংশনটি \( \ln(x) \) বা \( \log_e(x) \) আকারে লেখা হয়। এটি প্রাকৃতিক লগারিদম নামে পরিচিত।

উদাহরণ: \( f(x) = \ln(x) \) এর জন্য ডোমেন হলো \( x > 0 \) এবং রেঞ্জ হলো সব বাস্তব সংখ্যা।

২. দশমিক লগারিদম (Common Logarithm): যদি ভিত্তি \( 10 \) হয়, তখন লগারিদমিক ফাংশনটি \( \log(x) \) বা \( \log_{10}(x) \) আকারে লেখা হয়।

উদাহরণ: \( f(x) = \log_{10}(x) \) এর জন্য ডোমেন হলো \( x > 0 \) এবং রেঞ্জ হলো সব বাস্তব সংখ্যা।


লগারিদমিক ফাংশনের ব্যবহার

লগারিদমিক ফাংশন বিভিন্ন ক্ষেত্রে ব্যবহৃত হয়, যেমন:

  • গণনা: বড় সংখ্যাগুলি হ্রাস করতে (সংকুচিত করতে)।
  • বাস্তব জীবনের প্রক্রিয়া: ভূমিকম্পের মাত্রা নির্ধারণ (রিখটার স্কেল), শব্দের তীব্রতা (ডেসিবেল স্কেল) ইত্যাদির ক্ষেত্রে।
  • গাণিতিক ও বৈজ্ঞানিক বিশ্লেষণ: গ্রোথ এবং ডিকেই বিশ্লেষণে এবং বিভিন্ন লজিস্টিক মডেলে।

লগারিদমিক ফাংশন আমাদের সূচকীয় পরিবর্তনশীলতার বিশ্লেষণ সহজতর করে, যা গণিতে এবং বিজ্ঞানের বিভিন্ন ক্ষেত্রে অত্যন্ত গুরুত্বপূর্ণ।

common.content_added_by

ত্রিকোণমিতিক ফাংশন

675
675

ত্রিকোণমিতিক ফাংশন (Trigonometric Functions) হলো এমন ধরনের ফাংশন, যা কোণ এবং তার সম্পর্কিত অনুপাত নিয়ে কাজ করে। ত্রিকোণমিতিক ফাংশনগুলো মূলত ডান-কোণযুক্ত ত্রিভুজের বাহুগুলোর অনুপাতের উপর ভিত্তি করে তৈরি হয়। প্রধান ত্রিকোণমিতিক ফাংশনগুলো হলো সাইন (sin), কোসাইন (cos), এবং **ট্যানজেন্ট (tan)**। এদের সঙ্গে সম্পর্কিত অন্যান্য ফাংশনগুলো হলো কোট্যানজেন্ট (cot), সেক্যান্ট (sec), এবং **কোসেক্যান্ট (csc)**।


প্রধান ত্রিকোণমিতিক ফাংশন

১. সাইন (sin): \( \sin(\theta) \) হলো ডান-কোণযুক্ত ত্রিভুজের বিপরীত বাহু (opposite side) এবং অতিভুজ (hypotenuse) এর অনুপাত।
\[
\sin(\theta) = \frac{\text{বিপরীত বাহু}}{\text{অতিভুজ}}
\]

২. কোসাইন (cos): \( \cos(\theta) \) হলো সংলগ্ন বাহু (adjacent side) এবং অতিভুজের অনুপাত।
\[
\cos(\theta) = \frac{\text{সংলগ্ন বাহু}}{\text{অতিভুজ}}
\]

  1. ট্যানজেন্ট (tan): \( \tan(\theta) \) হলো বিপরীত বাহু এবং সংলগ্ন বাহুর অনুপাত।
    \[
    \tan(\theta) = \frac{\text{বিপরীত বাহু}}{\text{সংলগ্ন বাহু}}
    \]

সম্পর্কিত ত্রিকোণমিতিক ফাংশন

৪. কোট্যানজেন্ট (cot): \( \cot(\theta) \) হলো সংলগ্ন বাহু এবং বিপরীত বাহুর অনুপাত, যা \( \tan(\theta) \)-এর বিপরীত।
\[
\cot(\theta) = \frac{\text{সংলগ্ন বাহু}}{\text{বিপরীত বাহু}} = \frac{1}{\tan(\theta)}
\]

৫. সেক্যান্ট (sec): \( \sec(\theta) \) হলো অতিভুজ এবং সংলগ্ন বাহুর অনুপাত, যা \( \cos(\theta) \)-এর বিপরীত।
\[
\sec(\theta) = \frac{\text{অতিভুজ}}{\text{সংলগ্ন বাহু}} = \frac{1}{\cos(\theta)}
\]

৬. কোসেক্যান্ট (csc): \( \csc(\theta) \) হলো অতিভুজ এবং বিপরীত বাহুর অনুপাত, যা \( \sin(\theta) \)-এর বিপরীত।
\[
\csc(\theta) = \frac{\text{অতিভুজ}}{\text{বিপরীত বাহু}} = \frac{1}{\sin(\theta)}
\]


ত্রিকোণমিতিক ফাংশনের বৈশিষ্ট্য

  • পর্যায়: ত্রিকোণমিতিক ফাংশনগুলো পর্যায়বৃত্তিক (periodic) অর্থাৎ, এগুলো নির্দিষ্ট সময় পরপর পুনরাবৃত্ত হয়।
    • \( \sin(\theta) \) এবং \( \cos(\theta) \)-এর পর্যায় হলো \( 2\pi \)।
    • \( \tan(\theta) \) এবং \( \cot(\theta) \)-এর পর্যায় হলো \( \pi \)।
  • ডোমেন ও রেঞ্জ:
    • \( \sin(\theta) \) এবং \( \cos(\theta) \)-এর ডোমেন হলো সমস্ত বাস্তব সংখ্যা এবং রেঞ্জ হলো \([-1, 1]\)।
    • \( \tan(\theta) \) এবং \( \cot(\theta) \)-এর ডোমেনে কিছু বিশেষ কোণ নিষিদ্ধ থাকে, যেখানে ফাংশনের মান অসীম হয়। এদের রেঞ্জ হলো সমস্ত বাস্তব সংখ্যা।
    • \( \sec(\theta) \) এবং \( \csc(\theta) \)-এর ডোমেনেও কিছু বিশেষ কোণ নিষিদ্ধ থাকে এবং এদের রেঞ্জ হলো \( (-\infty, -1] \cup [1, \infty) \)।

ত্রিকোণমিতিক ফাংশনের ব্যবহার

ত্রিকোণমিতিক ফাংশন বাস্তব জীবনের অনেক ক্ষেত্রে ব্যবহৃত হয়, যেমন:

  • কোণ এবং দূরত্ব নির্ণয়: প্রকৌশল, জ্যোতির্বিজ্ঞান, এবং স্থাপত্যে বিভিন্ন দূরত্ব ও কোণ নির্ণয়ের জন্য।
  • আন্দোলন এবং তরঙ্গ: শব্দ, আলো এবং জল তরঙ্গের গতিবিধি বিশ্লেষণে।
  • পর্যায়বৃত্তিক প্রকৃতি: ঋতু পরিবর্তন, দোলন, এবং জ্যামিতিক পরিমাপের জন্য।

ত্রিকোণমিতিক ফাংশন তাই গণিতে এবং বিজ্ঞানের নানা ক্ষেত্রে অত্যন্ত গুরুত্বপূর্ণ এবং কার্যকরী।

common.content_added_by

পরমমান ফাংশন

568
568

পরমমান ফাংশন (Absolute Value Function) এমন একটি ফাংশন, যা যেকোনো সংখ্যার ধনাত্মক মান প্রদান করে। সহজভাবে বললে, কোনো সংখ্যার পরমমান মানে হলো সেই সংখ্যার মূল মান, কিন্তু ধনাত্মক রূপে। পরমমান ফাংশনকে সাধারণত \( f(x) = |x| \) আকারে লেখা হয়।


পরমমান ফাংশনের সংজ্ঞা

\[
|x| =
\begin{cases}
x, & \text{যদি } x \geq 0 \
-x, & \text{যদি } x < 0
\end{cases}
\]

অর্থাৎ:

  • যদি \( x \) ধনাত্মক বা শূন্য হয়, তবে পরমমান তার মূল মানই থাকে।
  • যদি \( x \) ঋণাত্মক হয়, তবে পরমমান তার বিপরীত ধনাত্মক মানে রূপান্তরিত হয়।

পরমমান ফাংশনের বৈশিষ্ট্য

১. ডোমেন: পরমমান ফাংশনের ডোমেন হলো সব বাস্তব সংখ্যা, অর্থাৎ \( x \in \mathbb{R} \)।

২. রেঞ্জ: পরমমান ফাংশনের রেঞ্জ হলো সব ধনাত্মক বাস্তব সংখ্যা এবং শূন্য, অর্থাৎ \( y \geq 0 \)।

৩. গ্রাফ: পরমমান ফাংশনের গ্রাফ \( y = |x| \) হলো একটি V-আকৃতির রেখা, যা \( y \)-অক্ষ বরাবর প্রতিসম। এই গ্রাফটি মূলবিন্দু (0, 0) থেকে শুরু হয় এবং ধনাত্মক ও ঋণাত্মক উভয় দিকেই সমানভাবে বিস্তৃত হয়।

৪. প্রতিসাম্য: পরমমান ফাংশনের গ্রাফটি \( y \)-অক্ষের সাপেক্ষে প্রতিসম, যা নির্দেশ করে যে \( |x| = |-x| \)।


উদাহরণ

  • \( |5| = 5 \) (কারণ \( 5 \) ইতিবাচক, তাই পরমমান তার মূল মানই থাকে)।
  • \( |-3| = 3 \) (কারণ \( -3 \) ঋণাত্মক, তাই পরমমান ধনাত্মক হয়ে \( 3 \) হয়)।
  • \( |0| = 0 \) (শূন্যের পরমমান শূন্যই থাকে)।

পরমমান ফাংশনের ব্যবহার

পরমমান ফাংশন গণিতের বিভিন্ন ক্ষেত্রে গুরুত্বপূর্ণ, যেমন:

  • দূরত্ব মাপা: দুই বিন্দুর মধ্যে দূরত্ব নির্ণয়ে ব্যবহৃত হয়।
  • জটিল সংখ্যা: জটিল সংখ্যার পরমমান নির্ণয়ে।
  • বাস্তব সমস্যা: বাস্তব জীবনের বিভিন্ন সমস্যায়, যেমন ত্রুটি বা বিচ্যুতি নির্ণয় এবং দৈর্ঘ্য মাপা।

পরমমান ফাংশন আমাদের কোনো সংখ্যার নির্দিষ্ট দূরত্ব বা পরিমাপকে ধনাত্মক রূপে প্রকাশ করতে সাহায্য করে, যা অনেক গাণিতিক সমস্যায় প্রয়োজনীয়।

common.content_added_by
টপ রেটেড অ্যাপ

স্যাট অ্যাকাডেমী অ্যাপ

আমাদের অল-ইন-ওয়ান মোবাইল অ্যাপের মাধ্যমে সীমাহীন শেখার সুযোগ উপভোগ করুন।

ভিডিও
লাইভ ক্লাস
এক্সাম
ডাউনলোড করুন
Promotion